本文共 965 字,大约阅读时间需要 3 分钟。
作为一个Python项目初次实践,我决定基于《海王》这部电影的评论数据进行分析。这项工作不仅让我对猫眼评论爬取的技术有了深入了解,还通过数据可视化揭示了观众对这部电影的真实反馈。
为了获取评论数据,我首先需要从猫眼的移动端评论接口获取数据。由于PC端只显示10条热门评论,数据量显然不足,故选择了从移动端接口爬取。通过调整offset偏移量和日期参数,可以逐步获取所有评论。
使用requests模块发送HTTP请求,伪装成手机浏览器,获取评论数据。请求成功后,返回的JSON数据包含评论列表和总数。为了获取完整评论数据,我通过减少最后一条评论的时间,逐步爬取所有评论。
解析返回的JSON数据后,提取昵称、地区、评论内容、分数、评论时间等字段。将这些数据存储到本地文本文件中,形成结构化的评论数据集。
通过循环获取评论数据并写入文件中,确保每条评论都完整保存。最终获取了36141条评论数据,为后续分析奠定了基础。
为了更直观地呈现数据,我使用pyecharts进行数据可视化。以下是主要的可视化结果:
通过echarts绘制地理坐标图,展示《海王》在各地的观影人数分布。虽然provinces、cities和countries模块支持的地区名称与实际数据不一致,但通过定制化的geo图表实现了城市分布的可视化。
以柱状图形式展示观众来源的排行,直观反映哪些地区的观众占比最高。通过Bar图表,清晰呈现前20个光影人数的城市和数量。
为了深入了解观众对电影的喜好,使用wordcloud工具生成评论词云。通过对评论进行分词处理(jieba),提取关键词,最后生成大众对电影的综合评价词云。
jieba进行分词,去除无关停用词。从评论数据来看,《海王》在观众中拥有很高的观影值。通过爬取、解析、可视化和词云分析,我对猫眼评论接口的使用有了更深入的理解,同时也掌握了基本的数据处理和可视化技能。
这一项目的完成,不仅验证了技术实现的可行性,也为后续的数据分析和可视化工作积累了宝贵经验。
转载地址:http://gtla.baihongyu.com/